OIT High Performance Computing Workshop

Performance Programming

on the

Cray YMP-EL

Dr. Andrew J. Pounds
High Performance Computing Group
Georgia Institutute of Technology

Performance Programming

. Vectorization - Processing chunks of contigous memory
simultaneously rather than sequentially. (Optimizes CPU time)

. Parallel Programming -- breaking up a task over sev-
eral processors. (Optimizes wall clock time)

Cray supercomputers have both of these performance enhance-
ment capabilities. However, on a Cray YMP platform, vectoriza-
tion is the critical issue in performance programming.

Our focus is vectorization!

Performance Programming on the Cray YMP-EL 2

What is a scalar and what is a vector?

MEMORY

S -«—— A Scalar is a single memory location.
V(,1)
V(2,1)
V(3,1)

A Vector is a series of memory locations.

V(8,10)
v(9,10)
V(10,10)

Cray research systems, like other computing platforms, have machine instruc-
tions that operate on scalars. However, unlike most other computers, the Cray
systems also have machine instructions that operate on vectors.

Performance Programming on the Cray YMP-EL 3

Why is Vector Processing Faster?

Example: Vector Multiply

do 10 i, =1, N

c(i) = a(i) * b(i)

10 continue

Scalar Processing:
1st operation: c(l) = a(l) *
2nd operation: c(2) = a(2) *

Nth operation: c(N) = a(N) *
Vector Processing

1st operation: c(l) = a(l) *
c(2) = a(2) *

c(64) = a(64)
2nd operation: c(65) = a(65)

C(N) = a(N) *

b(1l)
b(2)

b(N)

b(1)
b(2)

* b(64)
* H(65)

b(N)

VECTORIZATION IS MUCH FASTER!

Performarnce Programming on the Cray YMP-EL

OPERATION ORDER IS DIFFERENT USING
VECTORIZATION

FORTRAN Code:

DO 10 I =1, 3
L(I) = J(I) + K(I)
N(I) = L(I) + M(I)
10 CONTINUE

Operations in Scalar Mode

Event FORTRAN Result
1 L{1)=J(1)+K(1) 7=2+5
2 N(1)=L(1)+M(1) 11=7+4
3 CL(2)=TJ(2)+K(2) -1=-4+3
4 N(2)=L(2)+M(2) 5=-1+6
5 L(3)=J(3).+K(3) 15=7+8
6 N(3)=L(3)+M(3) 15=15+0

Operations in Vector Mode "

Event FORTRAN Result
1 L(1)y=J(1)+K(1) 7=2+5
2 L(2)=J(2)+K(2) -1=-4+3
3 L(3)=J(3)+K(3) 15=7+8
4 N(1)y=L(1)+M(1) 11=7+4
5 N(2)=L(2)+M(2) 5=-1+6
6 N(3)=L(3)+M(3) 15=15+0

Performance Programming on the Cray YMP-EL 5

SO HOW DO YOU VECTORIZE CODE?

In order of importance:

» Use FPP (the Fortran Pre-Processor) to auto-
matically vectorize the sections of code that it
recognizes are vectorizable.

e Use optimized libraries (SCILIB, IMSL, etc.)
whenever possible. This cannot can be
stressed enough!

« Use the Cray Performance Analysis Tools to
determine which routines are called the most
and which routines use the most time.

* Once the most frequently called routines and
the most tirne consuming routines have been
located, manually insert vectorization direc-
tives and re- write sections as needed so that

“ the compiler will vectorize them.

Performance Programming on the Cray YMP-EL 6

What will vectorize?

» Innermost loops addressing localized memory.

What will not vectorize?

* Outer loops

» Loops with I/O statements

» Loops with subroutine function calls

* Loops with data dependencies

KEY CONCEPT: Put as much computational

work as possible into the innermost loops of
your program.

Performance Programming on the Cray YMP-EL 7

Major Performance Analysis Tools

* ja -- (static) reports comprehensive statistics
on time spent in program modes and memory
usage.

usage: $ja
$cf77 program.f
S$a.out
Scut -¢l1-9,73-132 ja.out
$ja -st (terminates ja)

« flowview/flowtrace -- (dynamic) reports on
which routines are called the most and are the
best candidates for inlining.

usage: $cf77 -F prog.f
Sa.out
sflowview

» jumpview/jumptrace -- (dynamic) reports on
which routines use the most time.

usage: $cf77 -Wf”-ez” -ltrace prog.f
$jt a.out
Sjumpview

Performance Programming on the Cray YMP-EL 8

Workshop Objectives

e Use of the Cray FORTRAN Pre-processor
(FPP)

» Use of compilation listings to see how the pre-
processor modifies code.

e Use of ja to get timing statistics

e Use of flowview and jumpview to determine
which sections of code need work

e Coding strategies to obtain maximum vector-
ization

Performance Programming on the Cray YMP-EL e

Logging 1n...

Log into the machines in the Baird Sun cluster using your prism
account.

Type “xterm” and then in the new X-Window created by this
command type “xhost caracara”

rlogin to caracara by typing the following command

rlogin caracara -1 ccsupcc

The password is “GTech#1”

This ccsupcce account is running csh, so you will need to type the
following command in order for the X-Windows utilities to func-
tion correctly.

setenv DISPLAY bairdsunX.gatech.edu:0.0
where the X is the number listed on your individual display.
Once you are logged into the account create yourself a directory,
e.g. mkdir joe. Then change into this directory. Once inside
your own directory, issue the following command:

cp ../performance/*.f . (the periods are important!)

You are now ready to begin the workshop!

Performance Programming on the Cray YMP-EL ‘ 10

Workshop Program #1: trigmat.f

» Lots of vector work in a single module.

Compile and run unvectorized

cf77 -WE”-o0 novector -e mx” trigmat.f
ja

a.out

ja -c >Jja.out

cut -¢l-72 ja.out

Jja -st

Record the run time (this is in the column “User CPU Seconds™)

Compile Vectorized

cf77 -wf”"-e mx” trigmat.f
ja

a.out

ja -c¢ >ja.out

cut -cl-72 ja.out

ja -st

Record the runtime.

Look at the Compilation Listing

vi trigmat.l

Perfermance Programming on the Cray YMP-EL 11

Compilation Listing... Notice the “V” vectorization loopmarks.

[RIGMAT

6/95 10;08;45

PAGE 1 CRAY FORTRAN CFT77 6£.0,3,0 02/11/94 15:12:12 02/0

PREE
LDOOPHARK LEGEND

FRIMARY LOOP TYPE LOOP MODIFIERS
§ - scalar loop b - bottom lozded -
V - vector loop ,C - computed safe vector Length
W - wwound loop i - unconditiorally vectorized with an IVDEP
D - deleted loop k - kernel scheduled
t - unrotied

s - shart vector loop
v ~ short safe vector length

ATRIGHAT PAGE { CRAY FORTRAN CFT77 6,0,3,0 02/11/94 15:12:12 02/0
6795 10408145 PAGE 2
program trigmat
2 2.
3 2. parameter (maxdim = 500}
4 .
5 5. real cosvecimaxdim), sinvecimaxdim), tanvec(maxdim}
) 6, real matl{maxdim,maxdim}
7 7, real mat2{maxdim,maxdim}
8 B, real mat3{maxdim,maxdind
9 g,
10 10, x=1,0
1 i1,
12 12, & Fil1l Vectors
13 13,
14 4, ¥ ¢ do 10 1 =1, maxdin
15 15, v cosvec({i) = cos(real {1}#x})
16 16, ¥ 210 continee
17 17,
18 18, ¢ { do 20 [= 1, maxdin
19 19, ¥ sinvee{l) = sinireal{L}wx}
20 20, v 220 continue
il 2.
22 22, ¥ { do 30 L =1, maxdim
23 23,V tanvec{i} = sinf{real(i)%x)/cos (real (1)%x)
24 24, ¥ 330 continue
25 25,
26 26, # Fi]] Matrix 1
27 27,
28 28, § —={ .« dod01 =1, maxdin
2 29, § Vp-—mmmmmmmmmmeee- —(do 80 § = 1, maxdim
30 5V matlif, j} = cosvecti) * sinvec(j)
3 U, § Vpammemmeim e e —)50 continue
2 32, G e e Y0 continue
. B 3.
3 3. #* Fi]l Matrix 2
ki3 1, _
36 36, § { do 60 i =1, maxdin

*trigmat,l" 24& lines, 17695 characters

Performance Programming on the Cray YMP-EL 12

Notice the Matrix Multiply Code...

9 9,
10 1o,
11 i,
121,
13 13,
14 14,
15 15,
16 16
4,
HL: I -
13 {9,
2620,
2 A,
2 2,
g2,
A u
25 25,
& 25
a A,
a8 28,
23 2
30
a3,
oo,
Iz,
¥ 3,
B3,
B 36
¥,
o,
¥ n
a0 40,
41 i1,
2 4,
3 43,
94 4,
45 4,
% 4h.
a 4.
8 48,
49 49,
50 80,
5l 51,
52 B2,

6733 10:08:45

x=1,5
»¢ Fiil Vectors
¥ { dn 10 § = 1, maxdim
) casvec ([} = cos{raal{i)ux)
¥ 310 continue
) (do 20 1 =1, maxdim
) sinvec(l} = sip{raal{i)ex)
[Y20 continue
Y { dn 30 i =1, maxdin
v tanvec(i} = sintrealil)=x)/cos{renl (1}ux}
v »30 continue
» Fill Hatrix [
5 { do 40 i =1, maxdim
R e { do G0 j =1, maxdim
8 ¥r mati{i,J) = cosvecl(i} * sinvecij)
5 Yp-—-—r———r—————-}50 continue
& Y0 continue
we Fill Hateix 2
5 4 do B0 £ = 1, maxdim
8 ¥r——m——— do 70 § = 1, maxdim
SVr nat2{i,j) = cosvec{i} * tanvectj)
9 ¥r—— -3 continue
5 YE0 continue
wr Multiply Matrices
S { do 80 i = 1, maxdlm
§ Greveummmnninnnmnanand dn 90 j = 1, maxdim
5% sum = 0.0
5 8 yp- —————— do 100 k = 1, maxdim
SSVr sum = sum + matd (i, k)mmat2{k, §)
a1 continue
§§ mat3dl,)} = sum
§ Grrmem—mmmmeme 300 continue
5 10 continue
ATRIGHAT PASE 2 CRAY FORTRAM CFF77 6,0,3,0 02/11/94 156:12312
PAGE 3
53 53,
5 b, »¢ Find maximum valua in maatrix
55 53,
56 56. mmay = matddl, 1}
57 TR
P @ s ¢ do 110 1 = 1, maxdin

Performance Programming on the Cray YMP-EL

i3

02/0

Compile with Additional Vector Preprocessing
cft77 -2 v -Wf”’-e mx” trigmat.f

ja

a.out

ja -c¢ >ja.out

cut -cl-72 ja.out

ja -st

Record the runtime.

Look at the Compilation Listing

vi trigmat.l

Performance Programming on the Cray YMP-EL

14

Notice how the pre-processor packed the loops. It turned loops
10, 20 and 30 into one loop!

BTREGHAT PRSE 1 CRAY FORTRAN CFT77 £.0.3.0 02/11/94 15;12:12 02/0
6795 10:5B:15 PAGE 2

1 1. progran trigmat

2 2.

3 3. parameter (maxdim = 500 .
4 g ;. C...Translated by FPP 6,0 {3, DEEEi 02/06/%5 10:56:12 -
[.

b B. real cosvec(maxdin}, sinvec{maxdin}, tanvec(maxdim}

7 7. real matl{maxdim,maxdim}

B a, real mat2{maxcdim, maxdim}

9 3, real mat3{maxdim,maxdim}

10 10,

i1 i1, REAL RiX, R2K

12 12, x=1.5

12 13.

14 14, w» Fill Vectors

15 15,

16 15, CDIRE IVDEP

17 7. v 4 oD 10 I =1, 500

18 18, v LOSVECLI) = COS(RERLG{I}wX}

13 19, v SIHVEC{I) = SIH(RERLB{I}wx}

20 20, ¥ TAKVEC{I) = SIH(RERLB{Z}wX}/COS(RERLA (TN}

21 21, v Y 10 COMTIRUE

22 22,

23 23, wr FLll Matrix 1

24 24.

26 26. § COIRA IVOEP

27 27, § ¥r===-m—mmmemmmamaan(0¥ =1, 500

28 28, S Vr HHTi(I J} = COSVEC{I)#SINVEC(D}

29 29, § Wprmewmrrmmranore—aee) EHD D

30 0, S H EHD DB

3 3. S < o0 I=5 500, 6

32 32, § COIRG IVDEP

33 33,5V { D050 J =1, 500

34 i, 5V RIX = SIWVEC(D)

35 3, 5Y MAFL(1.J} = COSVECITIaRIX

36 3B, SV MATL(1+],J) = EBSVEC(A+I)aRAX

7 7,5V HATL(2¢], 3} = COSVEC(+I)4R1X

I8 B SY MATL(3+¢1,]) = COSVEC(I+I)#RIX

k}:] |, 5V MATL(4+41,J) = COSVEC(4+I)4R1X

40 40, SV MATL(6+1,J) = COSVEC(G+I)eR1X

41 4,5V MATL(B+1,J) = COSVEC(E+I)eRIX

42 42, 5V MAEL (7+1,J) = COSVEC(7+1)#R1X

41 43, § Ymmmmmmmmmmccmeeee——-h BO COMTINUE

44 dd, 5§] D 14

45 45,

46 486, we Fill Matrix 2

a7 47,

48 48, 5 { poI=1,14

48 49, 5 {DIRE IVDEP

50 50, § Vressemmumecncemenean(Do I =1, 500

51 5.5V HBTQ(I J} = COSVEC(I)TANVEC(I}

52 §2, § Vemmmommmmmmmemmmrmemy END T

Performance Programming on the Cray YMP-EL

15

The pre-processor also replaced the matrix multiplication code
with a Cray Scientific Library call. The pre-processor recog-
nized the coding construct as matrix multiplication and replaced
it with a more-efficient method! |

[[3B, 5V MAT1{1+1,3} = COSVEC{1+1}RIX
37 37.8Y MAT1{2+1,2} = COSVEC{2+I)wRIX
3B i sV MATL{3+1,]} = COSVEC{3+1)wRIX
39 | oSy MATY (d=1,]} = COSVEC{4+1)aRIK
40 40, SV HAT1{5+1,J} = COSVEC(T+I)#RIX
43 43, 8 Vmmmmmmmememmememe—m} B0 CONTINLE
44 44, § } END L0
45 45,

46 4b. % Fill Matrix 2

47 47,

49 4B, & < WIi=1f 14

43 49, § CDIRE IVDEP

50 80, S Vr == 0o J =1, 500

5t 51, S Vr MAT241, 1) = COSVEC(I)»TRNVEC(D)
2 §2, § Ypomuemmonmmammam—aaay EHD DD

52 G2, § Vpemmmrmmmmmerwnnnes) EHD BD

{TRIGMAT PAGE 2 CRAY FGRTRAN CFT77 6,0.3,0 02/11/94 15:12:12 0240

£/95 10.58:15 PAGE 3
53 §3. §) l
54 54, & { 081=5 500, 8
55 g5, § CDIRE IVDEP
Ba 86, § Yommmmmmmmm e a7 1=1, 500
57 57. 8V RIX = TANVEC(J}
b=t 59, §V MAT2{I,Jy = COSVEC(I}#RZY
59 89, SV MAT2{1+1, 1) = COGVEC(1+I)#R2d
80 63, SV MAT2{2+1,1) = COSVEC(2+1)aR2%
&l Bl, 5V MAT2(3+1,1) = COSVEC(3+I)wR2%
g2 g2, 5V MAT2(4+1,1) = COSVEC(4+I)uR2%
&3 63, 8V MAT2(5+1,J) = COSVEC(G+I}aR2Y
&4 B4, SV MAT2(8+1,1) = COSVEC(G+I)wR2M
a5 65, §V MAT2{7+1,1) = COSVEC(7+I)*R24
13 B&, § Y=r==mmmmmmnmemeee—eny 0 CORTINUE
a7 67, §) EHD DO
af 68,
gﬁ ?3 +¢ Multiply Matrices

0 .

n 71, CALL SGEMMXE (500, 500, 500, i,. MAT1(1,1), 1, 500, MAT2(L, 1), 1,
72 72, 1 500, 0,, WAT3(1,1}, L, 500)
73 73,

L] 4, e+ Find maximum value in mastrix

75 75,

76 76, rmax = mab3{l,1}

I 77.

78 78, CBIRE IVDEP

79 79, ¥ 4 o0 310 T = 1, 280000

Ao B0, V RHRX = MAXE(RMAX, HAT3{I,.1}}
Bt B, ¥ y 110 CONFIKUE

B2 B2,

a3 B3, print #, “Maximum = *, rmax
a4 B4,

Bs B5, end

Performance Programming on the Cray YMP-EL 16

Workshop Program #2: ortho.f

« Functional Nightmare!

Program expands a function in a basis of Chebyshev polynomials. The function is:

f(x) = cos (67x) sin (57x) exp(-—4x2)

0.8
0.6

n_:_/\/\/\/\ o
V \/\/V_

04k

46 -

08)] 1 [1
-1 -08 LIk 0.4 0.2 a 1) D4 1] 08 I

The program is going to compute:

N (1 2
Ay - [f(x) -y { JreoT e dx]r,. (x)]

i=1\—1
For N=1 to 40, where T; is the it Chebyshev Polynomial

Performance Programming on the Cray YMP-EL 17

Compile with Additional Vector Preprocessing

cf77 -2 v -Wf"-e mx” ortho.f
Jja

a.out

ja =-c >ja.out ,

cut -cl-72 ja.out

ja -st

Record the runtime.,

Look at the Compilation Listing

vi ortho.1l

This code is characteristic of “old” code. The functions gener-
ally use iterative means to calculate values, and the code is not
inlined at all. Because the program uses iterative means to eval-
uate functions, vectorization is not really helping us either
because only the innermost loops are being vectorized. These
typically do not have very long vector lengths and therefore the
time spent in setting up the vector registers is essentially wasted.
In fact, this code runs faster unvectorized! We will spend the rest
of our time using the Cray Performance Tools to optimize this
code.

The first thing we: will do is reduce the number of program itera-
- tions by altering :l.e parameter statement to maxdim=10.
Although this slightly affects the statistics we will shortly be col-
lecting, it greatly reduces the amount of time we will have to
wait on the program to finish.

Performance Programming on the Cray YMP-EL 18

Now, compile for a flowtrace analysis and use flowview;

cf?77 -F -2Zv -Wf”-e mx” ortho.f
a.out
flowview

FLOMVIEWMW Copyright Cray Research. Inc.

IM] Iﬁ_mf_hil |H“-‘1P| uUitl Options = P
FEER

i

PIE CHART SHOWING
sax ROUTINES USING THE MOST TIME wem
[Press Mouse Button uhile Inside Pie Slice to View Greater Detail.l

ALL OTHERS

PERCENTRGE ROUTINE

44,58 TOFX
40,65 FAC

5,32 FUNCL
4,05 ORTHO
3,82 PROD

1,58 ALL DTHERS

This shows that the Function TofX uses the most time. If you
click on the pie region TofX, the following is displayed.

Performance Programming on the Cray YMP-EL 19

FLOHVIEW
[Reports| iGraphs| [Help] [fuit] [oetions]

Flowtrace Statistics Report
Shawing AIL D%;)i(ls For Routine

Routine vas responsible for 44,67 of all program time,
Routine used 2,59F+00 sacands of CPU tine.
or BB421103 clock, pericds,
Routine was called 16335 times.
Routine averaged 1,59E-04 seconds of CPU time per call,
or 5291 clock periods per call,
This routine is a candidate for in-lining,
since {&s in-line factor is 3.1,
Routine entry address: 561c

CALLED-BY TIWINGS FOR ROUTINE
Caller Name Tot Time # Calls Rvg Time Routine Percentage

ORTHD 1.78E+00 11055 1.59E-04 67.54
PROD B.33E-01 5280 1.58E-04 32.%

This tells us how much actual time was spent in this routine,
including time to call (but not execute) other routines. If we
want to learn about where the most CPU time was spent, we need
to do a jumptrace analysis.

Now compile for a jumptrace analysis and use jumpview.
cf77 -Zv -Wf”"-ez” -ltrace ortho.f
Jt a.out

Jjumpview

Performance Programming on the Cray YMP-EL 20

The resulting X-Window display looks like the following:

JUHPVYIEMNW

Reports r'aphsl EHelp] fﬂuitl IUption9|
R e B R

PIE CHART SHOWING
wiok ROUTINES USING THE HOST TIKE s

FERCENTACE ROUTINE

57,16 FAC
21,13 TORX
B.39 RTOLZ

Notice first that the routine PROD does not appear in the
jumptrace analysis, but it does appear in the flowtrace analysis.
Very little CPU time is spent inside the routine PROD, it basically
calls two orther routines. Notice that jumpview also reports on
SIN% and RTOI%, computationally intensive system routmes
Click on the pie slice FAC.

Performance Programming on the Cray YMP-EL 21

Jumpview also gives you vectorization statistics, inlining statis-
tics, and floating point performance.

JUHPVIEM
[Reports| |Graghs] [Help| If."fultl [Uptiuns

JUWPTRACE DATA REPORT
Showing Information About & Single Routins

Routine: FAC
uas responsible for 57,2¢ of total CPU time,

1t was called 133650 times,
and used 1,42E+00 seconds of CPU time,
(47221218 clack periods),
Average CPU time used per call was 1,0EE~05 ssconds,
{ 354 elock perieds},
This routine 15 a candidate for in-lining, since its in-line factor is 376,3,
The routine psrformed 1.3 million floating-point operations per second,
The routine’s ratio of vector operations to scalar oparations {all) is 2,09 : 1,
The routine’s ratio of vectar operations to scalar operations (floating-point) f& (infinitel,
Vhe routine’s ratio of vector operations to scalar operations (wemory) is 1,21 3 1,
The routine psrformed 3.3 million logical operations per secand,
The routine performed 2,6 million memory operations per second,
The routine performed 1,5 vector operations per memory operation,
Total vector floating-point operaticns performed;
Vector Floating-Point Add 521235

Vector Floating—Point Hultiply 1250964
Vector Floating-Point Recip 104247

Clearly if we can increase the efficiency of FAC and TofX, we
can dramatically improve our programs performance.

Performance Programming on the Cray YMP-EL 22

Currently the Chebyshev polynomial is calculated as follows:

n/2
T,m=3 Y (D e

m=0

It can also be expressed as...

TN (x)= cos (Nacos (x))

This functional form removes any need to iterate (as in the
present form) and also eliminates the need to calculate factorials.
Replace the appropriate lines in the TofX function, change
maxdim back to 40, recompile and compare your timing results.

cf77 -Zv -Wf”-e mx” ortho.f
Jja

a.out

ja -c >Jja.out

cut -cl-72 ja.out

ja -st

Record your timing results.

Now, change the maxdim statement back to 10 and recompile for
a flowtrace analysis.

cf77 -F -Zv -Wf"-e mx” ortho.f
a.out

flowview

Performance Programming on the Cray YMP-EL 23

Here is the resulting flowview analsysis:

FLOMVIEHN Copyright Cray Research, Inc,

{Reports| [Graphs| [Help| {uit] [Optiens|

PIE CHART SHOWING
sk ROUTINES USING THE MOST TIHE soex
{Press Housa Buttan while Inside Ple Slice to View Greater Detail,l

PERCENTAGE ROUTINE

40,99 TOFK
20,80 FUNCL
16.44 (3FHO
156,40 FR0D
.47 147EG
8,00 AL OTHERS

-

Similarly, prepare 21 jumptrace analysis
cf77 -2z2v -Wf”-ez” -ltrace ortho.f

Jt a.out
jumpview

Performance Programming on the Cray YMP-EL

24

The resulting jumpview analysis looks like the following:

JUNPVIEMN
IREPDI":S | |Eraphs } |HB].P | Iﬂuit | lﬂPtiDnS i FES EARGH, N C.

PIE CHART SHOWING
wax ROUTINES USING THE HOST TIHE #xs
[Press House Button while Inside Pie Slice to Vieu Greater Detail,l]

PERCENTREE ROUTINE

33,96 SINK
24,29 ACOSY
12,44 TOFX

7.01 FUKCL

6.21 ORTHO
16.09 ALL OTHERS

Notice first of all that the routine FAC is no longer present. From
the Flowview analysis, it is clear that TofX, FUNC1 and PROD
are the routines to optimize. The Jumpview analysis tells us
that TofX and FUNC1 are doing most of the computational work

Performance Programming on the Cray YMP-EL 25

now (because they contain the STN% and ACOS% functions).
The time PROD is using to set up and make the two function calls
is essentially wasted.

Now we need to work on coding strategies:

Optimization Techniques handout...

Your mission:

I have gotten this code to run (with 40 basis functions) in under 1
second. See if you can match or beat this time. Here are three
hints:

1. Inlining.

2. Use the compilation listings to determine what loops are being
vectorized and which are not.

3. Where is there a big loop, with lots of work in it, that could be
vectorized? |

You are welcome to copy the programs to you own account if
you would like to continue to experiment with them. They are
readable in the directory ~ccsupcc/performance

Performance Programming on the Cray YMP-EL 26

